Solution:
Solution:
Sketch the graph and solve the following pairs of equations-
Given,
2x + y = 8
2x - 2y = 5
a1 a2 = 2 2 = 1
b1 b2 = 1 -2 = - 1 2
c1 c2 = 8 5
2x + y = 8
or, y = 8 – 2x....(i)
Figure-1
2x - 2y = 5
or, -2y = 5 - 2x
or, 2y = 2x - 5
or, y = 2x - 5 2.....(ii)
Figure-2
Hence, the concluded solution- (x,y) = (3.5, 1) (Answer)
(ii)
4x - 5y = 17
a1 a2 = 2 4 = 1 2
b1 b2 = 5 -5 = -1
c1 c2 = -14 17
2x + 5y = -14
or, 5y = -14 - 2x
or, y = -14 - 2x 5.....(i)
Figure-1
Again,
4x - 5y = 17
or, -5y = 17 - 4x
or, 5y = 4x - 17
or, y = 4x - 17 5.....(ii)
Now, For equation (ii), we find several values of y for different values of x.
Figure-2
Hence, the concluded solution- (x,y) = (0.5,-3)
(iii)
5x 4 - 3y = -3
a1 a2 = 1 2 ÷ 5 4 = 1 2 ✕ 4 5 = 2 5
b1 b2 = 1 3 ÷ (-3) = 1 3 ✕ 1 -3 = - 1 9
c1 c2 = - 8 3
x 2 + y 3 = 8
Figure-1
5x 4 - 3y = -3
Figure-2
5x - 4y = -3
a1 a2 = - 7 5
b1 b2 = - 8 4 = -2
c1 c2 = - 9 3 = -3
-7x + 8y = 9
or, 8y = 9 + 7x
or, y = 9 + 7x 8....(i)
Figure-1
5x - 4y = -3
or, -4y = -3 - 5x
or, 4y = 3 + 5x
or, y = 3 + 5x 4.....(ii)
Figure-2
Solution:
(i) 7x - 3y = 31
9x - 5y = 41
Given,
7x - 3y = 31.......(i)
9x - 5y = 41.......(ii)
7x = 31 + 3y
or, x = 3y + 31 7…....(iii)
9 ✕ 3y + 31 7 – 5y = 41
or, 27y + 279 7 – 5y = 41
or, 7 ✕ (27y + 279 7 – 5y) = 7 ✕ 41 [Multiplying both sides by 7]
or, 27y + 279 - 35y = 287
or, -8y + 279 = 287
or, -8y = 287 - 279
or, -8y = 8
or, y = -1
x = 31 + 3.(-1) 7
or, x = 31 - 3 7
or, x = 28 7 = 4
5x - 11y - 8 = 0
Given,
(x + 2)(y - 3) = y(x - 1)......(i)
5x - 11y - 8 = 0.......(ii)
xy + 2y - 3x - 6 = xy - y
or, xy + 2y - 3x - 6 - xy + y = 0
or, 3y = 3x + 6
or, 3y = 3(x + 2)
or, y = x + 2.......(iii)
5x - 11(x + 2) - 8 = 0
or, 5x - 11x - 22 - 8 = 0
or, - 6x = 22 + 8
or, - 6x = 30
or, x = - 5
y = - 5 + 2 = - 3
ax + by = a2 + b2
Given,
xa + yb = 2……(i)
ax + by = a2 + b2…....(ii)
xa + yb = 2
or, ab(xa + yb) = 2ab [multiplying both sides by ab]
or, xb + ya = 2ab
or, xb = 2ab - ya
or, x = 2a - ya b.....(iii) [divide both sides by b]
a(2a - ya b) + by = a2 + b2
or, a.2a - (ya b).a + by = a2 + b2
or, - (ya b).a = a2 + b2 – a.2a – by
or, - (ya b).a = a2 + b2 – 2a2 - by
or, - (ya b).a = b2 – a2 - by
or, - ya.a = b(b2 – a2 – by)
or, - ya2 = b3 – a2b – b2y
or, - ya2 + b2y = b(b2 - a2)
or, y(b2 - a2) = b(b2 - a2)
or, y = b [divide both sides by (b2 - a2)]
x = 2a - ab b
or, x = 2a – a = a
(iv) x18 + y18 = 1
x + y 2 + 3x + 5y 2 = 2
Given,
x18 + y18 = 1......(i)
x + y 2 + 3x + 5y 2 = 2.....(ii)
2(x + y 2 + 3x + 5y 2) = 2 ✕ 2
or, x + y + 3x + 5y = 4
or, 4x + 6y = 4
or, 2(2x + 3y) = 4
or, 2x + 3y = 2
or, 2x = 2 - 3y
or, x = 2 - 3y 2.....(iii)
or, 2 - 3y 2 ✕ 114 + y18 = 1
or, (2 - 3y) 28 + y18 = 1
or, (9(2 - 3y) + 14y) 252 = 1
or, 9(2 - 3y) + 14y = 252 [multiply both sides by 252]
or, 18 - 27y + 14y = 252
or, -13y = 252 - 18
or, - 13y = 234
or, y = -18
x = 2 - 3(-18) 2
or, x = 2 + 54 2
or, x = 56 2
or, x = 28
p(x + y) = 2pq......(i)
q(x - y) = 2pq......(ii)
x + y = 2q
or, x = 2q - y......(iii)
q(2q - y - y) = 2pq
or, q(2q - 2y) = 2pq
or, q.2(q - y) = 2pq
or, 2q(q - y) = 2q.p
or, (q - y) = p
or, -y = p - q
or, y = q - p
x = 2q - (q - p)
Solution:
Solve using elimination method-
(i) 3x - 5y = - 9
5x - 3y = 1
3x - 5y = - 9
or, 9x - 15y = - 27.....(i) [multiply both sides by 3]
And,
5x - 3y = 1
or, 25x - 15y = 5.....(ii) [multiply both sides by 5]
25x - 15y - (9x - 15y) = 5 – ( - 27)
or, 25x - 15y - 9x + 15y = 5 + 27
or, 16x = 32
or, x = 2
25x - 15y = 5
or, 25 ✕ 2 – 15y = 5
or, 50 – 15y = 5
or, -15y = 5 - 50
or, -15y = - 45
or, y = 3
(ii) x + 1y + 1 = 45
x - 5y - 5 = 12
x + 1y + 1 = 45
or, 5(x + 1) = 4(y + 1)
or, 5x + 5 = 4y + 4
or, 5x - 4y = 4 - 5
or, 5x - 4y = - 1.....(i)
And,
x - 5y - 5 = 12
or, 2(x - 5) = 1(y - 5)
or, 2x - 10 = y - 5
or, 2x - y = -5 + 10
or, 2x - y = 5
or, 8x - 4y = 20.....(ii) [multiply both sides by 4]
8x - 4y - (5x - 4y) = 20 - ( - 1)
or, 8x - 4y - 5x + 4y = 20 + 1
or, 3x = 21
or, x = 21 3
or, x = 7
8 ✕ 7 - 4y = 20
or, 56 - 4y = 20
or, -4y = 20 – 56
or, -4y = -36
or, y = 9
(iii) 2x + 3y = 5
5x - 2y = 3
2x + 6y = 5
or, 4x + 3y = 10.....(i) [multiply both sides by 2]
And,
5x - 2y = 3
or, 15x - 6y = 9.....(ii) [multiply both sides by 3]
4x + 6y + 15x - 6y = 10 + 9
or, 19x = 19
or, x = 1
15 ✕ 1 - 6y = 9
or, - 6y = 9 - 15
or, - 6y = - 6
or, -6y = - 6
or, y = 1
(iv) ax + by = 1
bx + ay = 2ab(a2 + b2)
ax + by = 1
or, b(ax + by) = 1.b [multiply both sides by b]
or, abx + b2y = b.....(i)
And,
bx + ay = 2ab(a2 + b2)
or, a(bx + ay) = a ✕ 2ab(a2 + b2)
or, abx + a2y = 2a2b(a2 + b2).....(ii) [multiply both sides by a]
abx + a2y - ( abx + b2y) = 2a2b/(a2 + b2) - b
or, a2y - b2y = 2a2b(a2 + b2) – b
or, y(a2 - b2) = 2a2b - b(a2 + b2) a2 + b2
or, y(a2 - b2) = 2a2b - a2b - b3 a2 + b2
or, y(a2 - b2) = a2b - b3a2 + b2
or, y(a2 - b2) = b(a2 - b2) a2 + b2
or, y = b a2 + b2
ax + b. b(a2 + b2) = 1
or, ax(a2 + b2)+ b2 a2 + b2 = 1
or, ax(a2 + b2) + b2 = a2 + b2
or, ax(a2 + b2) = a2 + b2 - b2
or, ax(a2 + b2) = a2
or, x(a2 + b2) = a
or, x = aa2 + b2
x = aa2 + b2 And
y = aa2 + b2
Solution:
Solution by cross multiplication method-
(i) 3x - 2y = 2
7x + 3y = 43
The given equation can be written as-
3x - 2y = 2
or, 3x - 2y - 2 = 0
and,
7x + 3y = 43
7x + 3y - 43 = 0
x(-2)(-43) - (-2)(3) = 1(3)(3) - (7)(-2)
or, x86 - (-6) = 19 - (-14)
or, x92 = 123
or, 23x = 92 [divide both sides by 23]
or, x = 4
y(-2)(7) - (-43)(3) = 1(3)(3) - (7)(-2)
or, y- 14 - (-129) = 19 - (-14)
or, y115 = 123
or, 23y = 115 [divide both sides by 23]
or, y = 5
5x 4 - 3y = -3
The given equation can be written as -
x2 + y3 – 8 = 0
and,
5x 4 - 3y + 3 = 0
x(13)(3) - (-3)(-8) = 1(12)(-3) - (54)(13)
or, x1 - (24) = 1-32 - 512
or, x-23 = 1-23/12
or, x-23 = 1 ✕ (-1223)
or, 1.x = 1 ✕ 12 [divide both sides by -23]
or, x = 12
y(-8)(54) - (3)(12) = 1(12)(-3) - (54)(13)
or, y- 10 - 32 = 1- 32 - 512
or, y -20-3 2 = 1-18-5 12
or, y -23 2 = 1-23 12
or, 2y23 = 1223
or, 2y = 12 [multiply both sides by -23]
or, y = 12 2
or, y = 6
2qx - py = pq
px + qy = p2 + q2
or, px + qy - p2 - q2 = 0
and,
2qx - py = pq
or, 2qx - py - pq = 0
Here, the method of cross multiplication applied,
x(q)(-pq) - (-p)(-p2 - q2) = 1(p)(-p) - (2q)(q)
or, x- pq2 - p3 - pq2 = 1- p2 - 2q2
or, xp(-p2 - 2q2) = 1- p2 - 2q2
or, xp(-p2 - 2q2) = 1- p2 - 2q2
or, xp = 1 [multiply both sides by (-p2 - 2q2)]
or, x = p
y(-p2 - q2)(2q) - (-pq)(p) = 1(p)(-p) - (2q)(q)
or, y- 2p2q - 2q3 + p2q = 1- p2 - 2q2
or, y- p2q - 2q3 = 1- p2 - 2q2
or, yq(-p2 - 2q2) = 1- p2 - 2q2
or, y q = 1 [multiply both sides by (-p2 - 2q2)]
or, y = q
(iv) ax - by = ab
bx - ay = ab
ax - by = ab
or, ax - by - ab = 0
and,
bx - ay = ab
bx - ay - ab = 0
x(-b)(-ab) - (-a)(-ab) = 1(a)(-a) - (b)(-b)
or, xab2 - a2b = 1- a2 + b2
or, xab(b - a) = 1(b - a)(b + a)
or, x(b - a)(b + a) = ab(b - a)
or, x(b + a) = ab [divide both sides by (b - a)]
or, x = aba + b
or, y- ab2 + a2b = 1- a2 + b2
or, ya2b - ab2 = 1- a2 + b2
or, yab(a - b) = 1(b - a)(b + a)
or, y(b - a)(b + a) = ab(a - b)
or, y(b - a)(b + a) = -ab(b - a)
or, y(b + a) = -ab [divide both sides by (b - a)]
or, y = -aba + b
x = aba + b and
y = -aba + b
Solution:
a) To determine the cost of enclosing the remaining empty area with fencing-
The rectangular garden,
width = y meter।
Perimeter, 2(x + y) = 120......(i)
and 2{2y + (x - 3)} = 150.....(ii)
2(x + y) = 120
or, x + y = 60
or, x = 60 - y......(iii)
Substituting the value of y into equation (iii),
x = 60 - y
or, x = 60 – 18
From the above solution find the length of the rectangular vegetable garden, x = 42 m.
According to the question one side of the garden is free along the length 42 meters.
42 meter cost = (42 ✕ 10) Taka
= 420 Taka
b) How much will be spent on fertilizers to determine-
Therefore, area of rectangular vegetable garden = (42 ✕ 18) sq m = 756 sq m।
Given, cost per 1 square meter of organic fertilizer = 7 Taka
∴ Cost per 756 square meter = (7 ✕ 756) Taka
= 5292 Taka।
Solution:
Determine and solve the nature of the roots of the equation x2 – 3 = 0
x2 – 3 = 0
We know,
standard form of quadratic equation- ax2 + bx + c = 0
Here, a = 1, b = 0, c = -3
Arrange the given equation according to standard form of quadratic equation- 1.x2 + 0.x + (-3) = 0
Then, the determinant of the given equation is b2-4ac = 02-4.1.(-3) = 12
Now, the determinant is 12 > 0 and is not an integer.
x = -b ± √ (b2-4ac) 2a
or, x = ±√ 3
Solution:
3x2 - 2x - 1 = 0
ax2+bx+c=0, where, a = 3, b = -2, c = -1
Therefore,
x = -b ± √ (b2-4ac) 2a
or, x = -(-2) ± √ {(-2)2 - 4 ✕ 3 ✕ (-1)} 2 ✕ 3
or, x = 2 ± √ (4+12) 6
or, x = 2 ± √ 16 6
or, x = 2 ± 4 6
So, x1 = 2 + 4 6 = 1 and, x2 = 2 - 4 6 = - 2 6 = - 1 3
Solution with the help of diagram-
y = 3x2 - 2x – 1
Plotting the value of (x,y) on the graph shows that (- 13,0) and intersect at the points (1,0). Therefore, these point values are the solutions of the given equation.
So, x1 = 1 and, x2 = - 13
Solution:
(a) The price of one duckling and one chicken is to be determined by—
each duckling is worth x Taka
each chicken is worth y Taka
Here, as per the question,
25x + 30y = 5000
and
20x + 40y = 5000 – 500
Here, putting x = 225 - 2y, in equation (i),
5x + 6y = 1000
Substituting the value of x into equation (ii), we get,
x = 225 - 2y
= 225 – 2 ✕ 31.25
= 225 – 62.50
= 162.50
b) How much total profit should be determined-
selling price of 1 duck = 250 Taka
selling price of 25 ducks = (250 ✕ 25) Taka
= 6250 Taka
selling price of 1 chicken = 160 Taka
selling price of 30 ducks = (160 ✕ 30) Taka
= 4800 Taka
Therefore, total selling price = (6250 + 4800) Taka
= 11050 Taka
Therefore, Setu's mother's profit is = Selling price - Purchase price
= (11050 - 5000) Taka
= 5050 Taka
So, total profit will be 5050 Taka. (Answer)
Solution:
Solve the following equations-
Given,
y = x2 - 2x – 3.....(i)
x - 3y + 1 = 0......(ii)
x – 3(x2 - 2x - 3) + 1 =0
Therefore, x + 1 = 0
or, x = -1
or, 3x = 10
or, x = 10 3
Now, putting the value of x = -1 in equation (i),
y = (-1)2 – 2.(-1) – 3
= 1 + 2 - 3
= 0
and x = 10 3 the value putting in equation (i)
y = (10 3)2 – 2.(10 3) – 3
= 100 9 - 20 3 – 3
= 100 - 20 ✕ 3 - 3 ✕ 9 9
= 100 - 60 - 27 9
= 13 9
Solution:
Form and solve 3 sets of equations in two variables (one linear and one quadratic) on your own.
1st set of equations formed-
y = x2 - x - 2.....(i)
x - 2y + 5 = 0.....(ii)
From equation no.(i), value of y substituting into equation no. (ii),
Therefore,
or, 2x = -3
or, x = - 3 2
and,
x - 3 = 0
or, x = 3
y = (- 3 2)2 – (- 3 2) – 2
or, y = 9 4 + 3 2 – 2
∴ y = 7 4
y = 32 – 3 – 2
or, y = 9 – 3 - 2
∴ y = 4
So, the deterministic solution, (x,y) = (3,4),(- 3 2, 7 4) (Answer)
x - y - 1 = 0......(ii)
or, x = 3
or, x = 1
y = 32 – 3.3 + 2
or, y = 9 – 9 + 2
or, y = 2
y = 12 – 3.1 + 2
or, y = 1 – 3 + 2
or, y = 0
y = 2x2 - 2x - 3......(i)
x - y - 4 = 0......(ii)
therefore,
or, x = 1
or, 2x = 1
or, x = 1 2
Now, putting the value of x = 1 into equation (i),
y = 2.12 - 2.1 – 3
or, y = 2 – 2 – 3
or, y = -3
No comments:
Post a Comment